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A perturbation technique is employed for dielectric waveguides with

a small dielectric difference between the guide and its surrounding

medium, resulting in an analytically si~, self-consistent, theory for

surface modes. The field equations are shown to msnifest bounded wave-

guide simplicity. In psr titular the transverse electric and magnetic

fields are related by a constant and possess the orthogonality of a metal

waveguide. Furthermore, an analytic expression is presented for the

eigenvalues. Although the analysis is based on small dielectric

differences, it is shown to be adequate when the inside dielectric is as

large as twice the outside. The results of the perturbation analysis are

applied to the excitation of a semi-infinite dielectric rod excited by

a uniform field.

In general the equations for the eigenfunctions and eigenvalues of

a cylindrical dielectric waveguide are complicated expressions. Several

authors ‘1’2] have noted simplifications, principally determined

numerically, for the situation of small dielectric difference between the

rod and its surrounding medium. (The condition of small dielectric

[2,4],
differences is common with practical devices . In this paper a

perturbation technique is used to formalise and extend the small dielectric

NOTES
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difference approximation, resulting in an analytically simple, self

consistent, theory.

The results of the perturbation analysis have been applied by the

[31 . ,nauthor to the study of mode propagation along dielectric tapers

this paper application is made

uniform excitation.

The essential results of

f011OWS : It is assumed that 6

6=

to the launching

the perturbation

<< 1

1 - (s2/s1)

of surface modes by a

theory are presented as

. ..(1)

s, , c. is the dielectric constant of the rod and of the surrounding medium
lZ

respectively. Then, by neglecting terms of order 6, the following

simplifications are made possible.

-.
vector fields ep, h is given as

J&*. G =
q

.

.

Orthogonal it y of the transverse modal

~;p.;;da (a)

~ j~p . ~; da (b). . . (2)

6
Pq

(c)

(Integration is extended over the entire transverse plane. The complex

form of orthogonality restricts the analysis to lossless media. )

The orthonormal fields ~p, ~ are defined as
P

(a)

. ..(3)
(b)
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where,

j (wt-BpZ)
+ fL(R) sin(.t$ + up) e

‘R=–

. - ,O(R) :(ot-’pz) (L = 0, TM) . ..(4)

j (wt-5pZ)

%
= fL(R) COS(,9.$ + ap) e (b)

j (ut -6PZ)
= f. (R) e (1 = O, TE)

(a)

where, in the above equations and throughout the paper, the upper sign

‘e ‘aken‘“r ‘he %M
modes and the lower for the E~M mOdea. (The

subscripts p are dropped throughout the remainder of the text for

simplicity of notation).

f (R) =
J !,;1

(UR) / JL_l R<l
+

. ..(5)

= Ki_l (~) / Kg.l R~l
+ +

Jg = J1(U) Bessel functions of order !; and KL = KL(w) modified

Hankel function of order L.

..(6)

v= (PIJ2EIld . ..(7)

(V is held constant in the perturbation procedure; it is not considered

as order 6.)

B = (VILF) (1 - N?/2v2) . ..(8)

R = rlp

z . z 1P
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U and W are the normalised eigenvalues for R < 1, R > 1 respectively; p

ia the radius of the rod. ? is the unit vector in the z direction, o ia

the azimuthal angle, P is the permeability of the media and u is the
P

phase constant.

For all mode types the eigenvalue equation is

(UJLIJL_l ) = t !wKg/KL_l) . . . (11)
+ +

U, V and W are related as

v’ = U’+W2 . . . (12)

Although (11) requirea a numerical solution, a rather useful analytic

representation can be derived from it. Asymptotically, above cut-of f ‘-

U(V) * U(CO) e-l/v . ..(13)

where
U(co) = roots of JL_l

. . . (14)+

= 2.405 (HEll) , 3.832 T%I> TEOIJ ’21, ‘tc”

A comparison of the approximate expression for U given by (13)

with that of the numerical solution of (11) is displayed in figure 1 and

is observed to be in excellent agreement except very close to cut-off.

The numerical results of (11) compared to the exact U are shown to have

an error of less than 1% for 6 ~ .2, and leas than 10% at 6 = .5 (inside

dielectric twice outside) Ref. [1].

Application to Surface Mode Launchin~

Consider a semi-infinite dielectric rod extending from z = O to -,

excited by a uniform field of zero amplitude except over the radius p.
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Such a field can be realised with either a horn or lazer. The wave is

incident with the z zxis at an angle 6 and is assumed to transmit unity

power. For the condition of 6 << 1 and 0 << 1 it is shown that at:

(a) Normal incidence (e = O)

Only the HEIM modes are excited with power
[5J

P = (2w/vu) 2 . . . (15)

(b) Arbitrary incidence

Depending on V all modes are excited with one exception. Either

the TM or the TE mode set is launched; interchanging the electric and

magnetic incident wave excites the other. The condi t ion for maximum

power to be launched in a particular mode is given approximately when

(v//d) = up . ..(16)

Then the power of mode p is

P = JL(eV/@
P

., .(17)

Conditions (16) and (17) are not valid for the REll mode which has a

maximum at ‘d = O given by (15).
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v- NORMAZIZEDFREQUENCY
Figure 1. Normalised frequency, V2 = (2nPl A)2 6, VRS the normalised eigenvalue u for 6 = O.

The dashed curve represents an approximate solution given by IIq (V) = Uq (-) ‘lIV
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