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A PERTURBATION THEORY FOR DIELECTRIC AND OPTICAL WAVEGUIDES

WITH APPLICATION TO THE LAUNCHING OF SURFACE MODES
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A perturbation technique is employed for dielectric waveguides with
a small dielectric difference between the guide and its surrounding

medium, resulting in an analytically simple, self-consistent, theory for

surface modes. The field equations are shown to manifest bounded wave-
guide simplicity. In particular the transverse electric and magnetic
fields are related by a constant and possess the orthogonality of a metal
waveguide. Furthermore, an analytic expression is presented for the
eigenvalues. Although the analysis is based on small dielectric
differences, it is shown to be adequate when the inside dielectric is as
large as twice the outside. The results of the perturbation analysis are
applied to the excitation of a semi-infinite dielectric rod excited by
a uniform field.

In general the equations for the eigenfunctions and eigenvalues of
a cylindrical dielectric waveguide are complicated expressions. Several

[1,2]

authors have noted simplifications, principally determined
numerically, for the situation of small dielectric difference between the
rod and its surrounding medium. (The condition of small dielectric

E2,4])_

differences is common with practical devices In this paper a

perturbation technique is used to formalise and extend the small dielectric

NOTES
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difference approximation, resulting in an analytically simple, self

consistent, theory.

The results of the perturbation analysis have been applied by the

[31. In

this paper application is made to the launching of surface modes by a

author to the study of mode propagation along dielectric tapers

uniform excitation.
The essential results of the perturbation theory are presented as

follows: It is assumed that § << 1

§ = 1 - (52/51) e (1)
€1 € is the dielectric constant of the rod and of the surrounding medium
respectively. Then, by neglecting terms of order §, the following

simplifications are made possible. Orthogonality of the transverse modal

vector fields Ep, Ep is given as

] Ep x ﬁ: .da = Ve Tu Ep . Ea da (a)
= /u/el fﬁp . Eg da (b)...(2)
= qu (c)

(Integration is extended over the entire transverse plane. The complex
form of orthogonality restricts the analysis to lossless media.)

The orthonormal fields Ep, ﬁp are defined as

Ep = /el (zxap) = §p//¢ (a)
- = <o e (3)
e T gplT¥ ()
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where,

N . 3 (wt"BPZ) (a)
&g = - fx(R) sin(R¢ + up) e
j(wt=B_2Z)
= -f® e P (s =0, ™ e (8
j(wt-BpZ)
g¢ = fL(R) cos(L¢ + ap) e (b)
jlwt -8_2)
= £ (R e P (2 = 0, TE)

where, in the above equations and throughout the paper, the upper sign
is taken for the HE&M modes and the lower for the EH&M modes. (The
subscripts p are dropped throughout the remainder of the text for

simplicity of notation).

£E@® = 3, R /3, R<1
+ +
( p oo (5)
K,_ (WR) / K, _ R>1
21 £+l
JE = Jl(U) Bessel functions of order 2; and Kl = Kk(w) modified
Hankel function of order %.
= [e xh*.da
[ f gp x L a
= pz’ﬂ Ve, /u (V/U)2 K K / K2 cea (6)
1 2 1;2 2;1
2
vV = (pw) aluG e (7)

(V is held constant in the perturbation procedure; it is not considered

as order §.)

8 = (V3 (1 - sut/avh .. (8)
R = r/p e e (9)
Z = z/o ... (10)
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U and W are the normalised eigenvalues for R < 1, R > 1 respectively; p
is the radius of the rod. £ is the unit vector in the z directiom, ¢ is
the azimuthal angle, p is the permeability of the media and &y is the
phase constant.

For all mode types the eigenvalue equationm is

= + I4 e
@) = 2GR, ) au
U, V and W are related as
V2 = U2 + W2 .ea (12)

Although (11) requires a numerical solution, a rather useful analytic

-

representation can be derived from it. Asymptotically, above cut-off

~1/v

U(V) ~ U(») e .ee (13)

where

U(=) roots of Jl;l . (18)

2.405 (HEll)’ 3.832 TMOl’ TEOI’ HEZl’ etc.

A comparison of the approximate expression for U given by (13)
with that of the numerical solution of (11) is displayed in figure 1 and
is observed to be in excellent agreement except very close to cut-off.
The numerical results of (11) compared to the exact U are shown to have
an error of less than 1% for § < .2, and less thamn 10% at § = .5 (inside

dielectric twice outside) Ref. [1].

Application to Surface Mode Launching

Consider a semi-infinite dielectric rod extending from z = O to =,

excited by a uniform field of zero amplitude except over the radius p.
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Such a field can be realised with either a horn or lazer. The wave is
incident with the z axis at an angle 6 and is assumed to transmit unity
power. For the condition of § << 1 and 6 << 1 it is shown that at:

(a) Normal incidence (0 = 0)

[s]

P = (2W/VU)2 «es(15)

Only the HE, modes are excited with power

™M
(b) Arbitrary incidence

Depending on V all modes are excited with one exception. Either
the ™ or the TE mode set is launched; interchanging the electric and

magnetic incident wave excites the other. The condition for maximum

power to be launched in a particular mode is given approximately when

w/ivs) = Up eee(16)

Then the power of mode p is
P, = JL(eV//d) .. (17

Conditions (16) and (17) are not valid for the HE 1 mode which has a

1

maximum at 6 = O given by (15).
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Figure 1. Normalised frequency, v2 = (Zﬂpll)zﬁ, VRS the normalised eigenvalue U for & = 0.

The dashed curve represents an approximate solution given by Uq(V) = Uq(“\’)—l/V
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